Word Embedding

Word Embedding é uma abordagem de mineração de textos em que as palavras são representadas de forma matemática em um vetor. Diferentemente da abordagem mais simples utilizada no modelo conhecido como bag of words, na qual as palavras costumam ser representadas em vetores muito grandes e esparsos, word embeddings utilizam vetores densos de tamanho fixo que são capazes de armazenar informações sobre o contexto e significado dos documentos.

Análise de sentimento com Multilayer Perceptron Model baseado em Bag-of-Words

Faremos um modelo de análise de sentimento em textos de revisões (reviews) de filmes. Nosso objetivo é classificar a opinião da pessoa que assistiu o filme como “opinião positiva” ou “opinião negativa”. Já ouviu falar de “bag of words”?

Time series forecasting: uma gentil introdução e sua engenharia de dados

Demorou, mas finalmente cheguei no tema time series forecasting! Neste artigo veremos as principais nomenclaturas usadas neste campo do aprendizado de máquina e como preparar nossos dados para realizar a previsão de séries temporais. Aqui o tempo é quem manda. Prepare-se para se surpreender com os recursos do Python.

Criando sua própria cost function para penalizar overfitting com Python scikit-learn

Cost functions (ou funções de custo) são usadas pelos algoritmos de aprendizado de máquina para tomada de decisões, por exemplo, definir a melhor configuração dos hiper parâmetros de um modelo ou até mesmo escolher as melhores variáveis preditoras/independentes (em modelos de classificação ou regressão).